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SUMMARY
The clinical use of molecular targeted therapy is rapidly evolving but has primarily focused on genomic alter-
ations. Transcriptomic analysis offers an opportunity to dissect the complexity of tumors, including the tumor
microenvironment (TME), a crucial mediator of cancer progression and therapeutic outcome. TME classifica-
tion by transcriptomic analysis of >10,000 cancer patients identifies four distinct TME subtypes conserved
across 20 different cancers. The TME subtypes correlate with patient response to immunotherapy in multiple
cancers, with patients possessing immune-favorable TME subtypes benefiting the most from immuno-
therapy. Thus, the TME subtypes act as a generalized immunotherapy biomarker across many cancer types
due to the inclusion of malignant andmicroenvironment components. A visual tool integrating transcriptomic
and genomic data provides a global tumor portrait, describing the tumor framework, mutational load, im-
mune composition, anti-tumor immunity, and immunosuppressive escapemechanisms. Integrative analyses
plus visualization may aid in biomarker discovery and the personalization of therapeutic regimens.
INTRODUCTION

Precision medicine has the potential to revolutionize cancer care

as accumulating evidence suggests that patients who receive

personalized therapy have better clinical outcomes (Schwae-

derle et al., 2016). The genomic characterization of tumors has

become more common in both clinical trials and in standard

care. Despite the growing acceptance of genomic analysis as

a part of clinical decisionmaking, genomic characterization often

largely entails the utilization of targeted panels comprising only a

limited number of genes that capture a fraction of oncogenic al-

terations (Suwinski et al., 2019; Castellanos et al., 2017; McCabe

et al., 2019). Transcriptomic analysis offers an additional oppor-

tunity to dissect the complexity and heterogeneity of tumors and

to discover new biomarkers that can be used to develop novel

therapeutic strategies (Cie�slik and Chinnaiyan, 2018). Whole-

exome sequencing (WES) and RNA sequencing (RNA-seq)

accompanied by conventional pathological, immunohistochem-

ical, and clinical tests offer a multifaceted view of tumor charac-

teristics and can potentially lead to the further identification and

optimization of individual cancer patient therapy (El-Deiry et al.,

2019; Koeppel et al., 2018; Malone et al., 2020). Nevertheless,

large-scale exome and transcriptome sequencing provide thou-

sands of parameters, which is often overwhelming and unsus-
tainable for routine treatment decision support (Koeppel et al.,

2018; Schwarze et al., 2020; Singer et al., 2019; Wadapurkar

and Vyas, 2018).

The tumor microenvironment (TME) plays a significant role in

clinical outcomes and response to therapy. By exerting pro- and

anti-tumorigenic actions, tumor-infiltrating immune cells can pro-

foundly influence tumor progression and the success of anti-can-

cer therapies (Fridman et al., 2012; Chen and Mellman, 2017).

Cancer-associated fibroblasts (CAFs) as well as angiogenic sig-

nals from stromal cells have been shown to affect outcomes (Liu

et al., 2019b; Pommier and Fearon, 2016; Schaaf et al., 2018;

Tao et al., 2017). Deciphering the tumor-immune microenviron-

ment profile of a cancer can improve the tailoring of targeted and

immunotherapeutic strategies. However, to date, comprehensive

and integrated genomic and transcriptomic analyses that assess

the tumor and the TME as a whole remain rare, are often unstruc-

tured, and lackefficient andusefulmodels. Here,wedevelopedan

accessible transcriptomic analysis platform for TME classification

to identify functional gene sets defined by cellular populations,

signaling signatures, TME processes, and cancer cell properties

that ensure comprehensive characterization of both the tumor

and its TME. Finally, transcriptomic and genomic data integration

were visualized, showing a planetary view of the tumor through a

comprehensive tumor portrait.
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RESULTS

Establishment of TME gene expression signatures
To classify TMEs using a transcriptomic-based analytical plat-

form, knowledge-based functional gene expression signatures

(Fges) representing the major functional components and im-

mune, stromal, and other cellular populations of the tumor

were selected using published literature (STAR Methods, Fig-

ure 1A, Table S1), ultimately creating a holistic approach thor-

oughly describing the TMEwithin one single model. T cell activity

and antigen-presentation Fges were chosen according to the

principles of the cancer immunogram (Blank et al., 2016) and

cancer immunity cycle (Chen and Mellman, 2013). Fges that

characterize the stromal compartments (e.g., angiogenesis,

CAFs), immune suppression via macrophages and myeloid-

derived suppressor cells, and Fges related to cancer cell proper-

ties (Sanchez-Vega et al., 2018) were included. Ultimately, a

manually curated list of 29 Fges was created covering known

cellular and functional TME properties (STAR Methods, Table

S1; Figures 1A and 1B). Each Fges was refined to include only

genes associated with a specific cell type or biological process

(Table S2, Figures 1C, S1A, and S1B).

The unique expression patterns of these genes were vali-

dated by cross correlation of gene expression within each

signature using RNA-seq analysis of tissue samples from The

Cancer Genome Atlas (TCGA), International Cancer Genome

Consortium (ICGC), or Genotype-Tissue Expression (GTEx) da-

tabases (Figure 1A). Specifically, the relative expression level of

each Fges was calculated by single-sample gene set enrich-

ment analysis (ssGSEA), which was applied across data types

to score samples based on gene set expression (Aran et al.,

2017; Charoentong et al., 2017). To confirm the cell type-spe-

cific expression patterns of each of the selected genes, addi-

tional gene selection was performed based on 4,212 RNA-seq

profiles of sorted immune and stromal cell subpopulations

across multiple public datasets collected from FANTOM5

(FANTOM Consortium and the RIKEN PMI and CLST (DGT)

et al., 2014), ENCODE (Raney et al., 2011; Consortium and

The ENCODE Project Consortium, 2004), BLUEPRINT, IRIS,

and the Gene Expression Omnibus (GEO) (Edgar et al., 2002)

(Figure 1A). As expected, the cytotoxic cell signature was pre-

dominantly expressed in sorted CD8+ T cells or natural killer

(NK) cells, and Fges related to extracellular matrix formation

were primarily enriched in fibroblasts. The final Fges were

highly cell type specific, with high expression scores for cell

types associated with each signature, and low scores for non-

target cell populations (Mann-Whitney p value < 10�100) (Fig-

ure S1B), showing effective segregation of the 4,212 cell profiles

(Figure 1D). The expression of the tumor proliferation rate signa-

ture, which consisted of cell cycle- and tumor progression-

associated genes, showed strong correlation and a progressive

increase in malignant melanomas compared with normal tissue

and nevi (Figure 1E). The final Fges showed a high level of cor-

relation with The Molecular Signatures Database (MsigDB) (Lib-

erzon et al., 2015; Subramanian et al., 2005) collection of hall-

marks and canonical pathways and other previously

published signatures (false discovery rate [FDR] < 0.05) (Table

S3) (Charoentong et al., 2017; Cancer Genome Atlas Network,

2015; Sxenbabao�glu et al., 2016; Bindea et al., 2013).
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The expression patterns of the 29 Fges were further charac-

terized using a large TCGA melanoma dataset (Figure 1F).

Pearson correlation analysis of the 29 Fges revealed two major

groups bound by positive correlations that were co-activated or

co-repressed across the dataset. One group comprised major

T cell Fges such as those responsible for trafficking, T-helper

1 (Th1), and regulatory T cell (Treg) phenotypes and effector

cell function, as well as NK cell-, major histocompatibility com-

plex (MHC) class II expression-, checkpoint inhibition-, and

macrophage-associated Fges. Collectively, these Fges encom-

passed the immune compartment of the TME, including both

anti-tumor-immune and tumor-promoting processes (Figure 1F).

The second group consisted of Fges defining stromal compo-

nents such as CAFs, matrix, and matrix remodeling, as well

as endothelium, angiogenesis, and pro-tumor cytokine expres-

sion. Remarkably, these two groups (immune and stromal com-

partments) showed no correlation with cancer cell Fges such as

the tumor proliferation rate and EMT Fges or the oncogenic ac-

tivity of cell specific signaling pathways such as PI3K, VEGF,

EGFR, p53, and MAPK using the PROGENy algorithm (Pathway

RespOnsive GENes) (Schubert et al., 2018) (Figure S1C). As ex-

pected, NF-kB, JAK-STAT, and TRAIL signaling activity corre-

lated with the presence of active Fges of cytotoxic T cells, while

transforming growth factor beta (TGF-b) signaling activity

correlated with the abundance of CAFs, major producers of

TGF-b (Erdogan and Webb, 2017). The survival probabilities

were compared between patient groups divided by the median

of the most representative Fges from each group, and the

group consisting of immune-associated Fges strongly corre-

lated with increased survival (Figures S1D and S1E). Lastly,

the 29 Fges were correlated with other tumor and microenvi-

ronment classification methods such as CIBERSORT (Newman

et al., 2015), the microenvironment cell populations-counter

(MCP-counter) deconvolution algorithm (Becht et al., 2016),

Sxenbabao�glu et al. signatures (Sxenbabao�glu et al., 2016), and

the six TCGA immune subtypes (Thorsson et al., 2018) (Fig-

ure S1F), with positive correlation of the stromal and lympho-

cytic Fges with the MCP-counter algorithm and Sxenbabao�glu
et al. signatures, showing the connections among the different

approaches.

Four melanoma microenvironment subtypes were
revealed by unsupervised analysis of the TME Fges
Significant progress has been recently achieved using immuno-

therapy and therapeutic vaccines (Ott et al., 2017) for cutaneous

melanoma (Weiss et al., 2019; Cuevas and Daud, 2018), empha-

sizing the importance of the immune microenvironment in this

cancer. To classify the melanoma TME using this curated list

of 29 Fges, their expression patterns were assessed across

approximately 470 melanoma tumors (TCGA-SKCM [Skin Cuta-

neous Melanoma]; Cancer Genome Atlas Network, 2015) using

unsupervised dense Louvain clustering based on their ssGSEA

scores (Blondel et al., 2008). This analysis revealed that the mo-

lecular profiles of melanomas can be clustered into four distinct

microenvironments termed (1) immune-enriched, fibrotic (IE/F);

(2) immune-enriched, non-fibrotic (IE); (3) fibrotic (F); and (4) im-

mune-depleted (D) (Figures 2A, 2B, S2A, and S2B, Table S4).

Classification using the 29 Fges resulted in four distinct TME

subtypes characterized by the presence of an immune-active



Figure 1. Generation of the 29 Fges utilized for transcriptomic-based TME classification

(A) Schematic overview of the workflow employed to generate the TME classification platform.

(B) The 29 Fges included in each functional group.

(C) Heatmap of the scores of themanually curated Fges (y axis) related to the cellular composition and functional propertiesmeasured in 3,462 samples of purified

cell populations (x axis).

(D) t-Distributed stochastic neighbor embedding (tSNE) projection of the purified cell samples in the space of the signature scores.

(E) Box plots showing the proliferation rate signature expression scores in normal (n = 7), nevus (n = 18), and malignant tissue (n = 45). In the box plots, the upper

whisker indicates themaximum value or 75th percentile +1.5 interquartile range (IQR); the lower whisker indicates theminimum value or 25th percentile�1.5 IQR.

(F) Pearson correlation between gene signature scores of 470 TCGA cutaneous melanoma (TCGA-SKCM) tumor samples.

See also Figure S1, Tables S1, S2, and S3.
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or immunosuppressive microenvironment and tumor stroma,

includingCAFs and vascularization, comparedwith conventional

classification methods that often result in fewer subtypes (Sxen-
babao�glu et al., 2016). These TME subtypes varied significantly

based on the expression of the 29 Fges, with each
subtype differing by the activity of at least six Fges (p < 10�7;

FDR < 10�5) (Figures 2A and S3B). Differences between the

TME subtypes distinguished by our approach were also

observed when analyzing previously reported signatures (Chen

and Mellman, 2017; Sxenbabao�glu et al., 2016), by cell type using
Cancer Cell 39, 845–865, June 14, 2021 847



Figure 2. The four distinct TME subtypes identified in melanoma

(A) Heatmap of 468 TCGA cutaneous melanomas (TCGA-SKCM) classified into four distinct TME subtypes based on unsupervised dense clustering of the 29

Fges. p values were calculated with the chi-square test. Additional annotation includes melanoma expression subtypes ‘‘MITF-low,’’ ‘‘immune,’’ and ‘‘keratin’’

taken from TCGA.

(B) Correlation-based graph network of tumor samples representing observed dense clusters revealed by unsupervised dense Louvain clustering (left).

(C) Heatmap of gene signature scores derived from the MCP-counter cell deconvolution algorithm or Sxenbabao�glu et al. (2016) for the TCGA-SKCM dataset

(n = 468).

(D) Relative signaling pathway activity scores in tumor cells measured from RNA-seq by PROGENy.

(E) Oncoplot of genomic alterations found in frequently mutated genes in melanoma.

(F) Box plots showing differences in tumor cellularity, total mutational burden, CIN score, cytolytic score (CYT), CD8+ T cells/Treg andM1/M2macrophage ratios,

fibroblast signature, and TGF-b and JAK/STAT pathway signaling activity calculated via PROGENy across the four TME subtypes for the TCGA-SKCM dataset.

(G) OS of melanoma patients stratified by TME subtype classification. In the box plots, the upper whisker indicates the maximum value or 75th percentile +1.5

IQR; the lower whisker indicates the minimum value or 25th percentile �1.5 IQR.

See also Figures S2 and S3, Table S4.
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the MCP-counter cell deconvolution method (Figure 2C)

(Becht et al., 2016), and by malignant signaling pathway activ-

ities calculated with PROGENy (Figure 2D) (Schubert et al.,
848 Cancer Cell 39, 845–865, June 14, 2021
2018). Previous signatures that did not consider stromal compo-

nents did not allow for the independent identification of all four

TME subtypes (Figures S2C–S2F) and instead only found three
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TME subtypes primarily differing by inflammation levels.

Genomic alterations frequently found in melanoma were also

not consistently associated with the specific TME subtypes

(Figure 2E).

The immune-inflamed IE/F melanomas were characterized by

the elevated expression of Fges associated with angiogenesis

and with CAF activation. The IE melanomas were distinguished

by high levels of immune infiltrate and significantly increased

cytolytic score (Rooney et al., 2015) and demonstrated a more

immune-active microenvironment compared with the IE/F sub-

type. TME subtype IE melanomas also had the highest muta-

tional load (p < 0.001) and highest ratios of CD8+ T cells/Tregs

(p < 0.001) and M1/M2 macrophages (p < 0.01) in comparison

with the other subtypes (Figure 2F). Analysis of activated

signaling pathways revealed increased JAK/STAT pathway acti-

vation in IEmelanomas, whichmay be associatedwith increased

T cell activity (Figure 2F). The two additional TME subtypes F and

D possessed minimal or completely lacked leukocyte/lympho-

cyte infiltration, with subtype D containing the highest malignant

cell percentage (Figure 2F), correlating with previously described

immune-desert phenotypes (Chen and Mellman, 2017; Galon

and Bruni, 2019). Chromosomal instability (CIN) measured as

the frequency of genome duplications or deletions (Ock et al.,

2017) was increased in subtype D melanoma, suggesting a

possible association of increased copy-number alterations

(CNAs) with the TME subtype (p < 0.001) (Figure 2F). In contrast,

melanomas classified as subtype F showed elevated expression

of Fges related to angiogenesis (Figure 2A) and increased CAFs

(Figure 2F). Fibroblasts are strong immune suppressors and TME

remodelers via secretion of TGF-b (Liu et al., 2019b; Chakravar-

thy et al., 2018; Zhuang et al., 2015). Indeed, the TGF-b signaling

pathway (Figure 2F) as well as the EMT transition and the cancer

cell metastasis Fges were significantly upregulated in the mela-

noma tumors classified as subtype F (Figure 2A) and correlated

with shortened patient survival to standard-of-care therapies

(Figure 2G). The patients with subtype IE melanomas had signif-

icantly longer overall survival (OS) and progression-free survival

(PFS) compared with patients with subtypes F and D (Figure 2G),

with subtype F demonstrating the worst OS.

The same tumor classification system was then validated us-

ing 23 independent melanoma datasets, the largest collected

melanoma transcriptomic dataset (n = 1,993 including TCGA-

SKCM), and the same four TME subtypes were revealed (Figures

S3A and S3B), with similar prognostic significance noted in the

selected melanoma cohorts with available clinical annotation

summarized using the entire dataset of 915 melanomas com-

bined and individually (Figures 2G, S3C, and S3D). Again, mela-

nomas classified as subtypes F and D were associated with

decreased survival to various chemotherapy/standard-of-care

regimens, including late-stage disease (Figures S3C and S3D).

The observed prognostic significance was validated utilizing

independent cohorts of patients with clinical annotation

(Figure 2G).

The histology phenotypes related to the gene expression pat-

terns in each TME subtype were investigated through analysis of

representative melanoma tumor specimens from TCGA-SKCM

(n = 62) to validate the TME subtypes histologically. Indeed, an

increased abundance of lymphocytes in melanoma subtype IE

and the high presence of fibroblasts in melanoma subtype F
were found (Figure 3A; Table S5), which was further confirmed

using an independent melanoma dataset (Figure 3B, GEO:

GSE8401) (Xu et al., 2008). Malignant cell content was the high-

est in subtype D (Figures 3A and 3B). The gene signature expres-

sion pattern among the four different TME subtypes histological-

ly correlated with the tumor abundance and spatial organization

of lymphocytes and stroma (Figure 3C). For example, lympho-

cytes were highly abundant in the TME subtypes IE/F and IEmel-

anomas. Subtype IE/F melanomas had higher stromal content

than subtype IE melanomas, whereas subtype F was highly

fibrotic with dense collagen formation (Figure 3C). The majority

of solid tumors display three major immunological phenotypes,

termed immune inflamed, immune excluded, and immune desert

(Hegde et al., 2016; Herbst et al., 2014); therefore, our TME sub-

types were categorized into these three classifications. Quanti-

tative histopathological review of TCGA melanomas revealed

that subtype IE but not subtype IE/F melanomas were enriched

with an immune-inflamed histological phenotype characterized

by abundant lymphocyte infiltration (Figure 3D), which was also

observed with a large, independent bladder cancer cohort

(n = 372) (Mariathasan et al., 2018) (Figure 3D). The majority of

subtype IE/F melanomas were characterized by an excluded

phenotype (Figure 3D), and the subtype D melanomas were pri-

marily characterized as desert (Figure 3D). Subtype IE, but not

the subtype IE/F melanomas, had increased PD-L1 expression,

both on lymphocytes (p < 13 10�10) and on tumor cells (p = 53

10�5) as measured by immunohistochemistry (Figure 3E), sug-

gesting an environment whose anti-tumor immunity could be

activated with anti-PD1/PD-L1 immune checkpoint blockade

therapies. Lastly, the analysis of mapped TCGA digitized hema-

toxylin-eosin (H&E)-stained images (Saltz et al., 2018) showed

the percentage of tumor-infiltrating lymphocytes to be signifi-

cantly higher in the IE/F and IE TME subtypes of melanoma

and bladder cancer (Figure 3F), providing additional large-scale

histological validation of the TME subtypes.

The four TME subtypes are conserved across a broad
array of cancers
Transcriptomic data from additional cancer types were analyzed

to determine whether the identified four TME subtypes are

also present in other cancers. The same gene expression-based

classification system was applied to a cohort of 8,024 TCGA

tumors. Due to significant intrinsic differences in cellular compo-

sition, expression analysis yielded distinct nosology-specific

subsets (Figure 4A). To remove tissue-type-specific effects, we

normalized gene signature values by median-score transforma-

tion within each cancer type (Figures S4A–S4C). Following

normalization, tumors of different tissue origin formed a uniform

single set in UMAP (UniformManifold Approximation and Projec-

tion) analysis (Figures 4A, 4B, and S4A). Normalization retained

the relationship and correlations between different TME mod-

ules, resulting in the identification of the same four major

TME subtypes found in melanoma within 24 various cancers

(n = 8,024 tumors; Figures 4C and 4D). Independent validation

of the classification system was performed on another pan-can-

cer cohort of 1,800 ExpO project adenocarcinomas where

expression was measured by microarrays (GEO: GSE2109).

Pearson correlation analysis of the 29 Fges across the 8,024

TCGA tumors revealed two major groups bound by positive
Cancer Cell 39, 845–865, June 14, 2021 849



Figure 3. The four TME subtypes correlate with tumor histology in melanoma and bladder cancer

(A) Box plots depicting relative lymphocyte, fibroblast, and malignant cell percentage scores by TME subtype of randomly selected TCGA-SKCM samples

(n = 10–16/TME subtype). Lymphocyte and fibroblast abundance was scored from 0 to 4 by manual examination of H&E by a pathologist.

(B) Box plots showing percentages of inflammatory and malignant cells per TME subtype of metastatic melanoma (GEO: GSE8401) as determined by histo-

pathological review.

(C) Representative TCGA H&E histological images of the TME subtypes and their association with three major histologically defined TME phenotypes: immune

inflamed, immune excluded, and immune desert. Scale bar denotes 100 mm.

(D) Percentage of histologically defined TCGA-SKCM melanomas (n = 62) and bladder cancers per TME subtype.

(E) Percentage of bladder cancers with PD-L1 expression measured by relative IC score (PD-L1 positivity cell percentage, IC0 < 1%, IC1 = 1-5%, IC2+ > 5%) on

immune cells (left) and malignant cells (right) per TME subtype.

(F) Box plots showing percentages of tumor-infiltrating lymphocytes as determine by a pathologist in the listed cancer types. In all box plots, the upper whisker

indicates the maximum value or 75th percentile +1.5 IQR; the lower whisker indicates the minimum value or 25th percentile �1.5 IQR.

See also Table S5.
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correlations, showing that the 29 Fges initially investigated in

melanoma can be employed for TME classification across

different cancer types (Figure S4D). Tumors segregated in an un-

supervised manner into the same four TME subtypes as in the

8,024 TCGA tumors and the 1,995 melanomas (Figure S4E,

Table S6), indicating that this expression signature-based TME
850 Cancer Cell 39, 845–865, June 14, 2021
classification system can be broadly applied at the pan-can-

cer level.

The association between the TME subtypes and the intrinsic

biology of different cancer types and viral-driven cancers was

also examined as viruses induce immune escape. Subtype

IE was enriched in EBV-positive gastro-esophageal cancer



Figure 4. The four TME subtypes are conserved across a broad array of cancers

(A) tSNE analysis of the 29 Fges scores across TCGA tumors. The dots represent individual tumor samples, and the colors represent the datasets (cancer types)

from TCGA.

(B) 3D UMAP projection of cancer patients per TME subtype (subnetworks) based on unsupervised dense clustering.

(C) Bar graphs depicting segregation of the carcinomas into the four TME subtypeswith representative heatmaps of unsupervised dense clustering of the 29 Fges

shown for esophageal cancer squamous cell carcinoma (ESCA-SCC) and lung squamous cell carcinoma (LUSC).

(D) Heatmap of 8,024 TCGA carcinomas segregated into the four TME subtypes by unsupervised dense clustering based on the intensity of the 29 Fges.

(legend continued on next page)
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(chi-square test, p = 7 3 10�6) and in HPV-positive head and

neck carcinomas (chi-square test, p = 23 10�8) (Figure S5A), re-

flecting the expected association of viral-driven cancers with an

inflamed TME. Next, we analyzed the T cell repertoire (TCR) and

B cell repertoire (BCR) recovered from the RNA-seq of multiple

cancer types. TCR and BCR richness was significantly higher

in the IE/F and IE subtypes, and T cell and B cell diversity (Shan-

non entropy index) was greatest in subtype IE (Figure S5B). Colo-

rectal and gastric cancers with high microsatellite instability

(MSI) have superior survival compared with tumors with low

MSI due to increased immunogenicity by infiltrating lymphocytes

and macrophages (Giannakis et al., 2016). Indeed, the majority

of hypermutated, including MSI and/or polymerase E (POLE)-

mutated, colorectal and gastric cancers, were classified as

subtype IE but not IE/F, differentiating between two types of

inflammation (Figure S5C). The conserved TME subtypes were

assessed across the different TCGA molecular subclasses of

specific adenocarcinomas, and the TCGA molecular subclasses

displayed marked differences in distribution across the four TME

subtypes (Figures S5D–S5L), showing the link between molecu-

lar and TME classification systems and similarities among

different classification systems.

Although the four TME subtypes were identified across multi-

ple cancers, the significance of this TME subtyping needed to be

further evaluated; therefore, the prognostic value of the TME

subtypes was assessed at the pan-cancer level and within indi-

vidual cancer types (Figures 4E and 4F). The multi-variate Cox

proportional hazard model controlling for cancer type and

sex showed a strong positive correlation with survival for sub-

types IE/F and IE and a negative correlation with subtype F

(p = 0.04). The majority of cancers with subtype IE TMEs corre-

latedwith superior prognosis (p = 83 10�12, Figure 4E). The stro-

mal subtype F was associated with inferior prognosis and short-

ened patient survival across various carcinomas (p < 0.04). The

immune-depleted subtype D was also linked to inferior prog-

nosis; however, this phenomenon appeared to be cancer type

specific. For example, in cervical cancer (cervical squamous

cell carcinoma [CESC]), no survival difference was observed be-

tween the subtype D tumors and immune-enriched tumors (Fig-

ures 4F and S6). Subtype IE, but not IE/F, was widely associated

with better survival in comparison with the other TME subtypes

analyzed within a cancer type, with indolent cancer types (pros-

tate adenocarcinoma, pheochromocytoma, and thyroid carci-

noma) excluded from the survival analysis due to <5% events

at 5 years (Figures 4F, S6, and S7A). The inclusion of in-depth co-

variate analysis of multiple clinical parameters known to be

important to the prognosis of each cancer type analyzed found

that TME subtyping based on the Fges strongly correlated with

survival in the majority of cancer types independent of the other

cancer-specific clinical factors (Figures S7B and S7C). For

example, TME subtype IE significantly associated with survival

(p = 0.001) independently of age and sex in cutaneousmelanoma

(Figure S7B). In bladder cancer, TME subtypes IE, IE/F, and D
(E) Log-hazard ratios with deviation for different tumor classification systems us

nomas controlled for cancer type.

(F) OS of TCGA patients with the denoted cancers according to TME subtype, T

(G) Schematic description of the features associated with the four pan-cancer TM

See also Figures S4–S7, Table S6.
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significantly correlated with survival independently of the other

covariates (Figure S7B). Lastly, TME subtype IE strongly corre-

lated with survival independently of MSI status, Epstein-Barr

virus (EBV) infection, and stage (p = 0.0016) in esophagogastric

cancer.

Ultimately, this combined analysis of the Fges patterns across

various cancer types created our classification system, which

divided the TME into the four subtypes (Figure 4G, Tables S4

and S6) that significantly correlated with OS and PFS in compar-

ison with other pan-cancer classification approaches such as

the immunophenoscore (Charoentong et al., 2017) and the six

TCGA immune TME subtypes (Thorsson et al., 2018) (Figure 4E).

For example, the immune-enriched cluster C3 identified in the

TCGA classification model, without normalization, showed a

generalized positive correlation with survival (Figure 4E); how-

ever, when analyzed within each cancer type separately, our

TME classification model correlated more significantly with OS

in melanoma, bladder cancer, cervical carcinoma, gastro-

esophageal adenocarcinoma (Figures 4F and S7B), and others

(Figures S6, S7C–S7E).

The four conserved TME subtypes correlate with
immunotherapy efficacy
Response to immunotherapy, and specifically to immune

checkpoint blockade, has been previously linked with T cell

infiltration (Engelhard et al., 2018; Tang et al., 2016), high tumor

mutation burden (TMB) (Hellmann et al., 2019; Rizvi et al.,

2015), neoantigen burden (quksza et al., 2017), and tumor anti-

genicity (Chowell et al., 2018; Zaretsky et al., 2016). To deter-

mine whether this TME classification system can be utilized

as a tool to predict response to immune checkpoint blockade,

the responses to immune checkpoint inhibitors were investi-

gated across the four different TME subtypes. In two indepen-

dent skin cutaneous melanoma cohorts (n = 58) (Nathanson

et al., 2017; Snyder et al., 2014; Van Allen et al., 2015) treated

with anti-CTLA-4 therapy, patients were classified into the four

TME subtypes (Figure 5A), which significantly correlated with

response to ipilimumab. The percentage of responders (R +

long-term survivors [LS]) to anti-CTLA-4 therapy in the immune,

non-fibrotic TME subtype IE was 82% in contrast to only 10%

of subtype F (Figure 5B). In both cohorts, OS following anti-

CTLA-4 was the longest in TME subtype IE (Figures 5C and

S8A). Similar findings were observed with three independent

anti-CTLA-4 naive cohorts of melanoma patients (n = 114)

treated with anti-PD1 therapy (Figure 5D) (Gide et al., 2019;

Hugo et al., 2016; Liu et al., 2019a). Overall response was

significantly higher in patients with TME subtype IE (75%)

compared with subtype F (10%) (Figure 5E), with prolonged

PFS and OS also noted in TME subtype IE in combined and in-

dividual cohort analysis (Figures 5F, S8B, and S8C). The asso-

ciation of the TME subtypes with immunotherapy response

was further analyzed using independent cohorts of anti-PD-

L1 or -PD1-treated patients with bladder (n = 346 patients)
ing Cox’s proportional regression hazard model for 8,042 patients with carci-

CGA subtype, and immunophenoscore.

E subtypes.



Figure 5. The four TME subtypes correlate with response to immunotherapy

(A) Heatmap of the 29 Fges showing TME subtype classification of melanoma biopsies collected prior to anti-CTLA-4 therapy (Van Allen/dbGaP: phs000452 and

Nathanson/SRA: SRP067586, n = 58).

(B) Percentages of responders (R) and LS who did not respond to anti-CTLA-4 therapy, and non-responders (NRs) treated with anti-CTLA-4 therapy across the

four TME subtypes.

(C) OS and PFS of patients with different TME subtypes treated with anti-CTLA-4 therapy.

(D) Heatmap of the 29 Fges for TME subtype classification across skin, non-acral melanoma biopsies collected prior to anti-PD1 therapy from three independent

datasets (Liu/phs000452, Hugo/GEO: GSE78220/GEO: GSE96619, Gide/ENA: ERP105482, total n = 114).

(legend continued on next page)

ll
Article

Cancer Cell 39, 845–865, June 14, 2021 853



ll
Article
(Mariathasan et al., 2018), lung cancer (n = 27) (Jung et al.,

2019), and gastric cancer (n = 34) (Figures 5G–5L and S8D).

Over 38% of bladder cancer patients with TME subtype IE

were responders (partial responder [PR], complete responder

(CR), and stable disease [SD] with PFS >6 months) (Figure 5H).

In contrast, the immunosuppressive subtype F bladder cancer

patients had significantly lower response rates to immuno-

therapy (<10% ORR; PD and SD with PFS <6 months). In

bladder cancer, immunotherapy-treated patients in subtype F

also displayed an inferior prognosis compared with the other

TME subtypes (Figures 5I and 5J). Bladder and lung cancer pa-

tients with TME subtype IE demonstrated the longest OS (Fig-

ures 5I and 5J). Notably, in gastric cancer, TME subtype IE was

only composed of responders (CR and PR) to anti-PD1 therapy

(Figure 5L). Next, the ability of the TME subtypes to delineate

responses to additional immune-based therapies such as ther-

apeutic vaccination against melanoma-associated antigen A3

(anti-MAGE-A3) (Ulloa-Montoya et al., 2013) and adoptive cell

therapy (Lauss et al., 2017) was tested, with responses strongly

correlating with the immune-enriched TME subtypes IE/F and

IE (Figures 5M, 5N, and S8E), suggesting that the TME classi-

fication system can be applied to diverse immune-based ther-

apies as a potential biomarker of response.

High TMB has been shown to correlate with immune check-

point blockade response (Hellmann et al., 2019; Rizvi et al.,

2015); therefore, the predictive potential of the TMB in concert

with the TME classification system was assessed. The effect

of the TMB in predicting immunotherapy response was deter-

mined by dividing the patients belonging to anti-CTLA-4 or

-PD1 studies into groups with low, medium, and high TMB

(Figure S8F). In the examined melanoma cohorts, no signifi-

cant association was observed between TMB and therapeutic

response (Figures S8G–S8J), which contrasted with the signif-

icant correlations between TMB and response and survival

observed in bladder cancer (Figures S8K and S8L). Strikingly,

survival rates of IE bladder cancer patients did not differ be-

tween TMB-high and -low patients (Figure S8M). Specifically,

Cox proportional hazards modeling showed a TMB-indepen-

dent predictive association of TME subtype IE with survival

(Figure S8K). TME subtype D bladder cancer tumors that

were enriched with TMB-high tumors had a relatively high pro-

portion of responders and increased OS (Figure S8M). These

results suggest that immune-low tumors with high TMB can

still benefit from immunotherapy in the absence of an immu-

nosuppressive CAF (e.g., IE/F or F TME subtypes). The TME

classification system may explain the effectiveness of immu-

notherapy in patients with low TMB, and these two classifica-
(E) Percentages of CR, PR, SD, and progressed disease (PD) patients treated with

(total n = 114).

(F) OS and PFS of melanoma patients with different TME subtypes treated with a

(G) Heatmap of the 29 Fges across bladder cancer biopsies collected before an

(H) Percentages of CR, PR, SD and PD among bladder cancer patients treated w

(I) OS of the bladder cancer patients treated with anti-PD-L1 therapy across the

(J) OS of lung cancer patients treated with anti-PD-L1 therapy and segregated in

(K) Heatmap of the 29 Fges across gastric cancer biopsies collected before anti

(L) Percentages of CR, PR, SD, and PD among gastric cancer patients treated w

(M) Percentages of responders (green) and NRs (red) to MAGE-A3 vaccine acros

(N) Percentages of CR, PR, SD, and PD melanoma patients treated with ACT ac

See also Figures S8–S10.
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tion systems, TME subtyping and TMB analysis, can comple-

ment each other as immunotherapy biomarkers.

Both predictive and prognostic biomarkers and patient

outcome stratification models, including expression signa-

tures, the expression of 1–2 genes, scoring systems, as well

as microenvironment and molecular classification systems,

are being developed for immunotherapy across many can-

cers, including melanoma and bladder cancer. To determine

the universal predictive and prognostic potential of TME sub-

typing in comparison with other methods, these potential

stratification methods were analyzed in the anti-CTLA-4-

and anti-PD1-treated melanoma cohorts as well as the anti-

PD-L1-treated bladder cancer cohort. To conduct these ana-

lyses, previously published scoring systems or signatures

were extrapolated, and an example of this extrapolation is

shown in Figure S9A for the TCGA TME types (Thorsson

et al., 2018) with further application to the TCGA-SKCM,

which produced an area under the curve (AUC) of greater

than 0.99, showing that we could accurately reproduce the

TCGA classification method in our datasets. With this ability

to classify datasets with these different stratification

methods, these methods were applied across the immuno-

therapy datasets Figure S9B. Next, survival was assessed in

the anti-CTLA-4- and anti-PD1-treated melanoma cohorts

as well as the anti-PD-L1-treated bladder cancer cohort using

TCGA TME typing (Thorsson et al., 2018), immunophenoscore

(Charoentong et al., 2017), TMB, PD-L1 (Topalian et al., 2012)

and interferon (IFN) g expression (Ayers et al., 2017), and

TCGA molecular subtypes (Cancer Genome Atlas Network,

2015). Significant stratification in survival in all cohorts was

not observed across all three cohorts (Figure S9C), in contrast

with TME subtyping, which meaningfully and significantly

stratified the survival of melanoma, bladder, lung, and gastric

cancer patients treated with immunotherapy (Figure 5).

Indeed, the TME subtypes had the ability to more clearly

delineate survival to immune checkpoint blockade compared

with TMB and immunophenoscore (Charoentong et al., 2017),

the six TCGA immune TME subtypes (Thorsson et al., 2018),

PD-L1 (Topalian et al., 2012) and IFNg expression (Ayers

et al., 2017), and TCGA molecular subtypes for melanoma

(Cancer Genome Atlas Network, 2015) and bladder cancer

(Jemal et al., 2014) (Figures S9A–S9C). Specifically, TCGA

subtypes did not correlate with survival in melanoma patients

treated with anti-CTLA-4 (p = 0.7) and anti-PD1 therapy (p =

0.2) and in bladder cancer patients treated with anti-PD-L1

(p = 0.5). Immunophenoscore had a weak correlation (p =

0.1) with survival in anti-CTLA-4-treated melanoma patients
anti-PD1 therapy from three melanoma datasets segregated by TME subtype

nti-PD1 therapy.

ti-PD-L1 therapy (n = 297).

ith anti-PD-L1 therapy across the four TME subtypes.

four different TME subtypes.

to the four different TME subtypes.

-PD1 therapy (n = 34).

ith anti-PD1 therapy across the four TME subtypes.

s the defined TME subtypes.

ross the four TME subtypes.



Figure 6. Dynamic changes within the tumor following treatment improves response prediction

(A) Sankey diagram showing the flow/changes of the TME subtypes of the responders (n = 16) to anti-PD1 therapy pre-treatment and on treatment.

(B and C) TME changes of ipilimumab-naive and -treated responders to anti-PD1 therapy. Patient tumor samples classified into TME subtypes before and after

treatment are depicted based on the number of T cells (y axis) and CAFs (x axis).

(D) Sankey diagram showing the flow/changes of the TME subtypes of the NRs (n = 20) to anti-PD1 therapy pre-treatment and on treatment.

(E and F) TME changes of NRs to anti-PD1 therapy. Patient tumor samples classified into TME subtypes before and after treatment are depicted based on the

number of T cells (y axis) and CAFs (x axis).

(G) Dynamic changes of the tumor microenvironment of five melanoma patients treated with anti-PD1 therapy. Patient tumor samples classified into TME

subtypes before and after treatment are depicted based on the number of T cells (y axis) and CAFs (x axis).

(legend continued on next page)
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(Figure S9C). IFNg expression and the TCGA molecular sub-

types significantly correlated with survival in melanoma (p =

0.04 and 0.06 and 0.004 and 0.09, respectively) but not

bladder cancer (p = 0.3 and 0.5, respectively). TMB did not

correlate with survival to anti-CTLA-4 and anti-PD1 in mela-

noma (p = 0.5 and 0.4, respectively) but TMB did correlate

with survival to anti-PD-L1 therapy in bladder cancer (p =

8 3 10�5, Figure S9C), leading to the Cox regression analysis

depicting that immune-enriched and high TMB burden (Fig-

ure S8K) are independent significant markers for response

in bladder cancer. Additionally, high TMB and low TMB within

the immune-enriched subtype respond equally to immuno-

therapy (Figure S8M). Not only were these classification

methods compared, inflamed, immune-excluded, and im-

mune-desert types (Chen and Mellman, 2017; Cristescu

et al., 2018) were assessed in the anti-PD-L1-treated bladder

cancer cohort, and these types did not significantly correlate

with survival or response to therapy (Figure S9D). Lastly, pa-

tient stratification based on MHC1 and MHCII expression (Ro-

dig et al., 2018; Liu et al., 2019a), CXCL9 expression (Qu

et al., 2020), and the immuno-predictive score (IMPRES)

(Auslander et al., 2018) was evaluated in the three cohorts

(Figure S9E). Again, the expression of these genes and signa-

tures did not significantly correlate with survival in all of the

cohorts. For example, MHCI and II expression only correlated

with survival in the anti-CTLA-4 melanoma cohort (p = 0.01

and 0.001) but not the anti-PD1-treated melanoma cohort

(p = 0.1 for both) or the anti-PD-L1-treated bladder cancer

cohort (p = 0.2 and 0.3). CXCL9 expression did not signifi-

cantly correlate with survival in the anti-PD1 melanoma

cohort (p = 0.08). The IMPRES score did not delineate survival

in the anti-CTLA-4 melanoma and anti-PD-L1 bladder cancer

cohorts (p = 0.1 and 1.0, respectively). MHCI and MHCII

expression and CXCL9 expression are markers of active

inflammation and correlate with the TME subtypes (Fig-

ure S9F). Overall, several of these biomarkers correlated

with response in individual cohorts, similarly to the TME sub-

type; however, none of these biomarkers correlated with

response across all the cohorts, highlighting the importance

of the development of multi-parametric biomarkers such

as TME subtyping (Figures S10A and S10B). Additionally,

the TME subtypes correlated with PD-L1 and CXCL9 expres-

sion and the IFNg signature and expression; however, the

TME subtypes acted as biomarkers that can be generalized

across many cancer types by taking into account numerous

microenvironmental factors. Overall, these comparative ana-

lyses definitively demonstrate the ability of this TME classifi-

cation platform to correlate with survival and reveal its
(H) Heatmap showing the expression patterns of the 29 Fges before and 6 week

subtypes and with TMB for the pre-treatment biopsies.

(I) Pie charts representing the changes to the microenvironments of these five pa

(J) Box plots showing fold changes in the T cells, CAF, immune checkpoint, and

patients followed by anti-PD1 treatment. Unassociated p values and FDR-adjuste

the maximum value or 75th percentile +1.5 IQR; the lower whisker indicates the

(K) Receiver operating characteristics of the anti-PD1 treatment predictionmodel b

treatment of 30 melanoma patients.

(L) Receiver operating characteristics of the anti-PD1 treatment prediction mode

anoma patients. p values are assigned to the AUC calculations.

See also Figure S11.
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potential as a universal biomarker across multiple cancers

and immunotherapies.

Dynamic evolution of the TME revealed in response to
immunotherapy
The TME directly influences the efficacy of immune checkpoint

blockade; however, immunotherapies can also affect and alter

the TME (Gide et al., 2019; Riaz et al., 2017). Therefore, tracking

TME evolution can provide important insights into immune

checkpoint blockade response. In melanoma cohorts where tu-

mor evolution could be evaluated, we analyzed the bulk RNA-

seq of pre-treatment and on-treatment biopsies (1–6 weeks

post treatment initiation) collected from a cohort of melanoma

patients treated with anti-PD1 immunotherapies (Figures 6A–

6G) Specifically, melanoma patients were segregated into anti-

CTLA-4-naive and anti-CTLA-4-progressed melanoma patients

due to reported marked differences in their baseline immuno-

suppression profiles (Riaz et al., 2017). Linear regression anal-

ysis of the TME dynamics of anti-CTLA-4-naive melanoma

patients treated with anti-PD1 showed an overall pre-response

(high effect size) trend toward the IE/F or IE subtypes, and an

overall anti-response trend toward the F or D subtypes. Remain-

ing as the TME subtype F (p = 0.0525) or IE/F (p = 0.053) before

and during treatment was slightly significant (Figure S11). TME

evolution dynamics were specifically visualized using the T cell

and CAF Fges—two major determinants of the four TME sub-

types—highlighting immunotherapy-favorable and -unfavorable

zones (Figures 6B–6G). Of these two groups, those who then re-

sponded to anti-PD1 therapy possessed primarily subtypes IE/F

and IE (13 out of 16 responders) that remained unchanged on

treatment or evolved toward the immune-enriched environments

(Figures 6A–6C). This evolution was visualized by the dynamic

tracks of responders on the T cells versus CAFsmap arrowed to-

ward the immune-favorable zones of IE and IE/F types based on

increasing T cell signature activity. In contrast, the TMEs of the

majority of non-responders to anti-PD1 therapy appeared to

maintain or move toward the immune-unfavorable TME (n = 14

out of 20 non-responders; Figure 6D, p = 0.02, non-responders

versus responders) and became increasingly immune depleted

and fibrotic (Figures 6D–6F). These evolutionary patterns were

supported by additional TME tracking of one of the melanoma

patient cohorts treated with anti-PD1 immunotherapy (n = 5, Fig-

ures 6G–6I) (Garcia-Diaz et al., 2017). Two melanoma patients

with pre-treatment TME subtype F tumors did not respond to im-

mune checkpoint blockade and remained in the subtype F after

treatment (Figure 6G). In general, tumors from melanoma pa-

tients who responded to immunotherapy evolved to the

immune-enriched TME subtypes IE and IE/F, whereas the
s after anti-PD1 treatment for the same patients presented in (A) across TME

tients post-anti-PD1 therapy.

proliferation rate Fges after the treatment for ipilimumab-naive and -treated

d p values (q values) are denoted. In the box plots, the upper whisker indicates

minimum value or 25th percentile �1.5 IQR.

ased on the TMB or the addition of the change in TME subtype before and after

l based on the change in TME subtype before and after treatment of 30 mel-



Figure 7. Genomic alterations that correlate with TME subtype for rational therapeutic design

(A) Statistically significant differences in the enrichment of copy-number variants (deletions or amplifications) presented as log odds ratio of copy-number event in

cytoband, controlled for tumor histology across the four TME subtypes (FDR < 0.01).

(B) Heatmap showing statistically significant enrichment of mutations in tumor types displayed as fold enrichment log10 odds ratio. Significancewas evaluated by

the Cochran-Mantel-Haenszel chi-square test to account for tumor histology.

(C) Sankey plot showing antigenicity and TMB (left) per TME subtype linked to mutation group (right) across TCGA patients at the pan-cancer level.

(D) Schema for the rational selection of combinatorial anti-cancer treatment based on (1) the analysis of the TME subtype and tumor antigenicity to select

appropriate immunotherapy options; and (2) TME-independent analysis of tumor genomic alterations to select appropriate targeted therapy.

See also Figure S12.
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non-responders retained the immune unfavorable subtype F

(Figure 6I).

The expression of T cell- and NK cell-associated Fges, Tregs,

and immune checkpoint expression significantly increased in the

responding tumors over time (Figure 6J, FDR-adjusted p values

[q values] ranging from 0.03 to 0.052), suggesting activation of

the TME and increased immune cell infiltration in response to im-

mune checkpoint blockade. We determined the predictive value

added by assessing pre- and on-treatment biopsies in addition

to TMB, the common biomarker of immune checkpoint blockade

response. Notably, using a logistic regression model, TMB alone

was not able to predict the response to anti-PD1 immunotherapy

compared with the addition of TME subtype changes before and
during treatment (AUC, 0.56; p = 0.31 versus 0.82; p = 0.0012;

Figure 6K). TMB could not discern a potential responder versus

non-responder (AUC = 0.56), with essentially only a 50% chance

of correctly predicting the response, whereas incorporating the

TME classification both before and on treatment improved the

probability of correctly separating responders from non-re-

sponders with more than 80% accuracy. In an enlarged cohort

(Riaz et al., 2017; Garcia-Diaz et al., 2017; Rizvi et al., 2015)

with no TMB data available, TME classification utilizing pre-

and on-treatment biopsies still had improved predictive potential

compared with TME classification using pre-treatment biopsies

alone (AUC, 0.78; p = 0.0015 versus 0.67; p = 0.037; Figure 6L),

supporting the utilization of these two classification methods,
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TME subtyping and TMB status, in collaboration and the addition

of the information gained by on-treatment biopsies to fully

develop computational systems to accurately predict immuno-

therapy response.

TME subtypes associate with cancer genomic
alterations
Genomic alterations and oncogenic signaling within the tumor

have been shown to affect anti-tumor immunity and TME activity

(Rooney et al., 2015; Spranger et al., 2015); therefore, links be-

tween tumor mutations and TME classification were investi-

gated. The patterns of multiple specific CNAs in chromosome

regions encoding immunoregulatory and oncogenic genes

were associated with each TME subtype (Figure 7A). For

example, IE carcinomas were enriched with CD274 (PD-L1)

and PDCD1LG2 (PD-L2) gene amplifications (9p24), suggesting

that tumor-reactive lymphocytes may increase the expression of

these immune checkpoints, dampening anti-tumor immunity.

The anti-apoptotic gene BCL2L1 (BCL-xL; 20q11.21), was

amplified in TME subtype IE carcinomas, in contrast to its com-

mon deletion in subtype F carcinomas (Figure 7A). TME subtype

IE carcinomas had a relatively high frequency of alterations in

genes regulating DNA mismatch repair such as MSH2 and his-

tone modifications such as CREBBP, KMT2A, and PBRM1

(Miao et al., 2018; Pan et al., 2018). Additional immune escape

mechanisms observed in TME subtype IE carcinomas may be

linked to mutations in genes associated with antigen-presenta-

tion machinery or the interferon-inducible pathway (CASP8) (Fig-

ure 7B). TME subtype D carcinoma was enriched inCDK6 (8p11)

and BCL2L1 gene amplifications, associated with increased

cellular proliferation (Figure 7A) as well as RTEL1 (20q.13), a

regulator of telomere elongation. Polycomb Repressive Com-

plex-associated genes (PRC.17q25) (Pirrotta, 1998; Grossni-

klaus and Paro, 2014) were frequently lost in TME subtype IE/F

but amplified in TME subtype D, suggesting different modes of

transcriptional regulation of this TME subtype via chromatin re-

modeling. TME subtype D carcinomas were also enriched with

KEAP1 gene mutations, suggesting altered regulation of oxida-

tive stress, chemoresistance, and enhanced tumor cell growth,

potentially leading to the decreased presence of immune cells

by the NRF2-KEAP1 pathway (Wu et al., 2019).

The genomic alterations associated with each TME subtype

were further dissected across the 8,024 TCGA melanomas and

adenocarcinomas, primarily focusing on different levels of anti-

genicity measured by TMB (left, Figure 7C) as well as major es-

tablished clinically actionable and targetable mutations (Thors-

son et al., 2018; Sanchez-Vega et al., 2018) (right, Figure 7C).

Moreover, patients possessing alterations in genes resulting in

loss of MHC class I machinery were assessed as a distinct group

because these patients would not respond to the immuno-

therapy due to the lack of antigen presentation (Montesion

et al., 2021) (Figure 7C). Approximately 4%–10% of patients

per subtype had these mutations, with the highest percentage

in the IE subtype and the lowest in the F subtype (Figures 7B

and 7C), which correlates with previously observed immunore-

active and suppressive properties of those subtypes. Ultimately,

this analysis shows that transcriptomic-based TME classifica-

tion coupled with genomics analysis can be exploited for combi-

natorial therapeutic design (Figure 7D).
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At the pan-cancer level, no clear enrichment of alterations was

observed in any of the TME subtypes, potentially due to imbal-

ances in the TCGA cohorts and different frequencies of the alter-

ations per cancer type (Figures 7C and S12A). Interestingly,

actionable alterations were grouped into different genomic clas-

ses by supervised clustering of the tumor mutational profile (Fig-

ures S12A and 7C). The majority of carcinomas belonged to only

one genomic group, forming a diagonal of enriched potentially

actionable alterations (Figure S12A), indicating which targeted

pathway inhibitors would be potentially active against the tumors

regardless of the TME cluster. Genomic alterations and copy-

number variations in genes associated with oncogenic signaling,

DNA repair, and cell cycle regulation (Thorsson et al., 2018) per

cancer type were also examined (Figure S12B), revealing poten-

tial associations of mutational status of clinically actionable

genes with TME. Interestingly, EGFR alterations in head and

neck (p = 2 3 10�6) and lung cancers (p = 0.006) (Figures

S12B and S12C) and KRAS/NRAS in colorectal (p = 2 3 10�6)

and renal adenocarcinomas (p = 0.02) were associated with

the F and D TME subtypes, whereas PIK3CA alterations in lung

squamous cell carcinoma (p = 0.03) and stomach adenocarci-

noma (p = 0.008) were associated with the inflamed IE subtype.

Breast cancer tumors with PTEN loss also showed a more in-

flamed IE subtype (p = 0.004). BRCA1/2 loss in endometrial car-

cinoma was associated with TME subtype IE (p = 0.01). This

analysis provides an overview of clinically actionable mutational

associations and TME subtypes, complementing each other in

potential therapeutic decision making for cancer types.

A visual tool based on integrated transcriptomics and
genomics for personalized therapy selection
To visualize the integrated analysis of genomic alterations with

gene expression patterns in both malignant cells and the TME

for each tumor sample, we generated a planetary schema

termed Molecular Functional (MF) Portrait (Figure 8A). The MF

Portrait was separately generated for each tumor sample based

on its unique characteristics, ultimately representing a personal-

ized tumor map. The entire portrait includes qualitative and

quantitative descriptions of modules built based on our Fges

(Figure 1B). The TME gene expression patterns were generated

as modules associated with endothelial, stromal, or immune

cells, which were further categorized as either pro- or anti-tumor.

Each MF Portrait module represents the scores of the 29 Fges,

with the size of each module corresponding to the intensity of

the normalized ssGSEA score, and the colors denoting pro-

(red) or anti-cancer activity (blue) (Figure 8A). The relative per-

centage of the malignant cell and TME compartments was

calculated based on the purity of each tumor sample using

WES (Figure 8A). In the MF Portrait, potentially targetable

genomic alterations in the cancer cells related to different pro-

cesses such as cell proliferation, oncogenic signaling, EMT,

angiogenesis, and anti-tumor immunity are listed and prioritized.

For example, in the MF Portrait of a melanoma tumor, clinically

actionable mutations in only BRAF and BRCA2 were found out

of the approximately 50 prioritized genes known to be involved

in melanoma tumorigenicity and progression (Figure 8A, red let-

ters). Also, the TME subtypes were integrated into the MF

Portrait visual tool to aid in the rational design of therapeutic stra-

tegies relevant to each of the four TME subtypes (Figure 8A). For



Figure 8. A visual tool for rational therapeutic design in oncology

(A) MF Portrait of a melanoma tumor with TME subtype IE/F. Potential targetable genes (around the circle), signaling pathways, and cellular processes related to

each of 29 Fges. Two potentially actionable mutations were identified as listed in red:BRAF V600E and BRCA1 S1841R. On the right is a list of potential therapies

for each tumor subcategory.

(B) MF Portrait of a melanoma tumor with TME subtype F.

(C) Melanoma MF Portrait of TME subtype IE.

(D) MF Portrait of a melanoma tumor with TME subtype D.
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example, the analyzed melanoma tumor shown in Figure 8A was

classified as the IE/F TME subtype, suggesting that immune

checkpoint blockade may promote anti-tumor immunity in

this immune-rich tumor in combination with inhibition of immu-

nosuppressive stromal signaling. To support rational design of

combinatorial therapeutic strategies and patient selection

to clinical trials, each analyzed tumor is assigned a TME

subtype using transcriptomics and then integrated with the ge-

nomics analyses as shown in Figures 8B–8D, providing a tool

(http://science.bostongene.com/tumor-portrait/) with potential

clinical utility for clinicians making treatment decisions for a

broad array of cancer patients.
DISCUSSION

Major advances and breakthroughs in the field of precision medi-

cinehave relied solely ongenomic analyses.Nevertheless, the role

and clinical impact of transcriptomic analysis have recently

emerged (Cie�slik and Chinnaiyan, 2018; Rodon et al., 2019; Sailer

et al., 2019; Borad et al., 2016; Vaske et al., 2019) as comprehen-

sive analysis of RNA transcripts can also significantly contribute to

tissue deconvolution, detailing BCR/TCR rearrangements, and

neoantigen identification. Additionally, integrated genomic and

transcriptomic analysis outperforms single-omics analysis (Rodon

et al., 2019; Robinson et al., 2017; Beaubier et al., 2019).
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Although the importance of the TME in various cancers is well

established, comprehensive analyses based on combined

genomic and transcriptomic data of the tumor and its TME

remain lacking. Clearly understanding the cancer type- and

treatment response-specific variations in the TMEmay elucidate

the mechanisms underlying therapeutic resistance to both tar-

geted therapies and immunotherapies as well as identify novel

therapeutic strategies. Hence, we developed a multi-omics

and robust analytical platform to classify, reconstruct, and visu-

alize the entire tumor composition.

We defined four distinct TME subtypes utilizing unsupervised

analysis of approximately 2,000 melanoma patients. Similar to

prior reports, we found our subtypes separated into clusters

defined by unique immune cell compositions (Petitprez et al.,

2020). However, based on our curated list of Fges, we identified

TME subtypes defined by unique stromal, vascular, and cytokine

expression patterns. These four TME subtypes were conserved

across at least 20 additional cancers in over 8,500 tumor

samples, revealing the intrinsic connection of the biological pro-

cesses described by the Fges of each cancer tissue. Interest-

ingly, the conservation of these TME subtypes in myriad cancers

shows that the biological processes, stroma, and immunological

activity of the TME in different cancers are markedly similar.

Although cancer cells are unique, immune relationships ap-

peared to be similar across all the patients, even those with

different cancer types, enabling TME classification into four sim-

ple TME subtypes. Importantly, the TME subtypes significantly

correlated with patient OS or PFS and had higher correlation

rates compared with other pan-cancer classification ap-

proaches such as immunophenoscore (Charoentong et al.,

2017), the six TCGA immune TME subtypes (Thorsson et al.,

2018), PD-L1 (Topalian et al., 2012) and IFNg expression (Ayers

et al., 2017), TCGA molecular subtypes for melanoma (Cancer

Genome Atlas Network, 2015) and bladder cancer (Jemal

et al., 2014), CXCL9 expression (Qu et al., 2020), MHCI and II

expression (Rodig et al., 2018; Liu et al., 2019a), and the IMPRES

score (Auslander et al., 2018). Notably, our TME classification

was the only platform that consistently and significantly corre-

lated with survival after immune checkpoint blockade in both

melanoma and bladder cancer. The immune subtypes described

by the TCGA consortium were obtained without tissue normali-

zation (Thorsson et al., 2018), revealing differences between

the biology of cancer types rather than conserved TME sub-

types, leading to the classification of greater than 90% of renal

and thyroid carcinomas as the inflammatory phenotype and

80% of colorectal cancers as the wound-healing subtype.

Normalization of the RNA-seq expression values enabled pan-

cancer TME classification that can easily be applied to all cancer

patients.

The observed TME subtypes share multiple similarities with

the clusters identified in other studies, reflecting or expanding

those patterns. The stromal component refines the previously

classified immune or T cell-enriched clusters in melanoma or

renal cancer (Cancer Genome Atlas Network, 2015; Sxenba-
bao�glu et al., 2016) into the IE/F and IE subtypes, which are strik-

ingly different by immunosuppressive profile, mutational burden,

and tumor genetics. Our conserved TME subtypes were remark-

ably similar to the recent clusters identified in sarcoma (Petitprez

et al., 2020), where type C showed similar patterns to our fibrotic
860 Cancer Cell 39, 845–865, June 14, 2021
subtype and type E displayed similarities to our immune-en-

riched, non-fibrotic subtype. This tissue-independent TME clus-

tering transforms the ideas of the cancer immunogram (Blank

et al., 2016) or cancer-immune set points (Chen and Mellman,

2017), which suggest numerous possible options to a limited

number of well-conserved TME subtypes.

Although immune checkpoint inhibition has revolutionized

cancer care, durable responses are still observed only in a mi-

nority of patients, sometimes at the cost of severe toxicities

(Wolchok et al., 2017). Therefore, the a priori identification of re-

sponders would improve clinical outcome and is critically

needed. Here, we show that TME classification can further strat-

ify patient responses to immunotherapy, withmelanoma patients

possessing F and D TMEs experiencing the worst outcomes to

immune checkpoint blockade. High TMB and immune-favorable

TME type IE led to the prediction of patients who would benefit

the most from immunotherapy. TME classification before and

on treatment led to significantly better prediction of response

to immunotherapy compared with TMB alone. Interestingly, we

clearly separated inflammation into good and bad inflammation

during TME classification. Specifically, although IE/F was en-

riched with active immune cells, no clear benefits were observed

in response to immunotherapy, and subtype F, enriched with fi-

broblasts, was the most suppressive TME. Taken together,

these findings suggest that the basis of immune suppression

lies not with the immune cell activity but instead with the pres-

ence and activity of stromal cells, indicating that simultaneous

stromal signaling suppression (e.g., anti-TGF-b antibody) with

immune checkpoint blockade may be a beneficial therapeutic

strategy for cancer patients with fibrotic TMEs.

Although we identified genetic aberrations associated with the

different TME clusters, key tumor driver mutations observed in

melanoma and in several other cancers were not consistently

associated with the specific TME subtypes at the pan-cancer

level, although clinically actionable mutations were associated

with the different TME subtypes in specific cancers such as

EGFR mutations in head and neck and lung cancers. Neverthe-

less, this overall limited association between clinically actionable

genomic alterations and the TME subtypes at the pan-cancer

level supports future strategies integrating multi-platform anal-

ysis of the TME and tumor genomics.

Despite genomics and transcriptomics becoming more

accessible and widespread over the last decade, real-time and

comprehensive analyses that can be applied in a clinical setting

are still lacking, primarily due to the absence of an analytical

infrastructure and easy-to-use tools for clinical decision support

(Freimuth et al., 2017). To address this need, we developed an

intuitive visual tool that integrates multi-omics datasets and gen-

erates a comprehensive portrait of each tumor, based on its

unique composition of genomic alterations, gene signature

expression patterns, and cellular content, providing a global

summary of all the potentially targetable alterations and mecha-

nisms that characterize each tumor, leading to the rational selec-

tion of anti-cancer treatments. Continued development of such

multi-compartment analytic strategies, combined with intuitive

visualization tools and the addition of clinical trials designed to

demonstrate the benefits of targeting cancer transcriptomics,

will further improve the implementation and use of advanced

personalized therapeutic strategies across the oncology field.
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Melanoma-Budden Budden et al. (2016) GEO: GSE59455
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Anti-PD1-treated advanced

melanoma-Riaz

Riaz et al. (2017) GEO: GSE91061

Melanoma-Hao Hao et al. (2017) GEO: GSE43081

Anti-PD1+ anti-CTLA-4 or anti-PD1-treated
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Melanoma-AJCC_1 and _2 Hayward et al. (2017); Jayawardana

et al. (2015)
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Melanoma-Xu Xu et al. (2008) GEO: GSE8401

Melanoma and nevus-Kunz Kunz et al. (2018) GEO: GSE112509
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Montoya

Ulloa-Montoya et al. (2013) GEO: GSE35640

Melanoma-Raskin Raskin et al., 2013 GEO: GSE15605

Melanoma-Jonsson Jönsson et al. (2010) GEO: GSE22153

Metastatic melanoma-Augustine Augustine et al. (2010) GEO: GSE19293

Metastatic melanoma-Bogunovic Bogunovic et al. (2009) GEO: GSE19234

Anti-CTLA-4-treated melanoma-Van Allen Van Allen et al. (2015) dbGaP: phs000452

Anti-CTLA-4, anti-CTLA-4+ anti-PD1, anti-

PD1-treated melanoma-Auslander

Auslander et al. (2018) GEO: GSE115821

Anti-CTLA-4, anti-PD1-treated

melanoma-Liang

Liang et al. (2017) dbGaP: phs001036

Anti-PD1-treated melanoma-Hugo Hugo et al. (2016); Garcia-Diaz

et al. (2017)

GEO: GSE78220, GEO: GSE96619

ACT-treated melanoma-Lauss Lauss et al. (2017) GEO: GSE100797

Anti-CTLA-4-treated melanoma-

Nathanson

Nathanson et al. (2017) SRA: SRP067586

Anti-PD-1-treated melanoma-Khan Pomeranz Krummel et al. (2019) GEO: GSE131521, SRP198996

Anti-PDL-1-treated bladder cancer-

Mariathasan

Mariathasan et al. (2018) EGA: EGAS00001002556

Anti-PD-L1 or anti-PD1-treated lung

cancer-Jung

Jung et al. (2019) GEO: GSE135222

Anti-PD-L1-treated gastric cancer-Kim Kim et al. (2018) ENA: ERP107734,

SRA: PRJEB25780

human reference genome GRCh38 Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Software and Algorithms

Codes used for ssGSEA scoring This paper https://github.com/BostonGene

affy 1.52.0 Gautier et al., 2004 RRID: SCR_012835; http://www.

bioconductor.org/packages/release/bioc/

html/affy.html
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limma R Ritchie et al., 2015 RRID: SCR_010943; http://bioconductor.

org/packages/release/bioc/html/

limma.html

MANTIS Bonneville et al. (2017) https://github.com/OSU-SRLab/MANTIS

Immunophenoscore Charoentong et al. (2017) https://tcia.at/tools/toolsMain

FastQC v0.11.1 and v0.11.5 https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

https://www.bioinformatics.babraham.ac.

uk/projects/fastqc/

RSeQC v3.0.0 Wang et al., 2012 http://rseqc.sourceforge.net/

MultiQC v1.6 Ewels et al., 2016 https://github.com/ewels/MultiQC

Conpair algorithm Bergmann et al. (2016) https://github.com/nygenome/conpair

FilterByTile/BBMap v37.90 NA https://jgi.doe.gov/data-and-tools/bbtools/

bb-tools-user-guide/bbmap-guide/

BWA v0.7.17 NA https://github.com/lh3/bwa/releases/tag/

v0.7.17

Picard’s v2.6.0 http://broadinstitute.github.io/picard/ http://broadinstitute.github.io/picard/

GATK v3.8.1 NA https://gatk.broadinstitute.org/hc/en-us

Strelka v2.9 Saunders et al., 2012 https://github.com/Illumina/strelka

Variant Effect Predictor v92.1 McLaren et al., 2016 https://uswest.ensembl.org/info/docs/

tools/vep/index.html

Sequenza v2.1.2 Favero et al., 2015 https://github.com/cran/sequenza

Kallisto v0.42.4 Bray et al., 2016 https://pachterlab.github.io/kallisto/

GENCODE v23 transcripts 69 Frankish et al., 2019 https://www.gencodegenes.org/

MIXCR version 2.1.7 https://mixcr.readthedocs.io/en/master/ https://mixcr.readthedocs.io/en/master/

CamDavidsonPilon/lifelines: v0.14.6

(Version v0.14.6)

doi: 10.5281/zenodo.4002777 https://github.com/CamDavidsonPilon/

lifelines

CIBERSORT Newman et al. (2015) https://cibersort.stanford.edu/

MCP-counter R package Becht et al. (2016) https://github.com/ebecht/MCPcounter

ssGSEA Subramanian et al. (2005) http://software.broadinstitute.org/gsea

PROGENy Schubert et al. (2018) https://saezlab.github.io/progeny/

Louvain community detection algorithm Blondel et al. (2008) https://github.com/taynaud/python-louvain

Cochran-Mantel-Haenszel test (R stats

package v3.4.4)

Mantel and Haenszel, 1959 NA

GISTIC 2.0.23 analysis Mermel et al., 2011 https://software.broadinstitute.org/cancer/

cga/gistic

Ordinal regression model (R clm from

package ordinal, v2018.4.19)

NA https://github.com/runehaubo/ordinal

lsmeans R package (v2.27.62) NA https://github.com/rvlenth/lsmeans

spectral co-clustering algorithms (Spectral

Co-clustering model from scikit-

learn 0.22.2)

NA https://scikit-learn.org/stable/

Python-matplotlib (3.0.3) NA https://github.com/matplotlib/matplotlib

python-seaborn (v0.7.1) mwaskom/

seaborn: v0.8.1 Zenodo

Waskom et al. (2017) https://doi.org/10.5281/zenodo.883859

UMAP package NA https://github.com/lmcinnes/umap

Other

Molecular Functional Portrait Visual Tool This paper https://science.bostongene.com/tumor-

portrait/
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Materials availability
This study did not generate new unique reagents.

Data and code availability
This study did not produce any raw data. Processed data, including reanalysis of published datasets showing the Fges scores are

available in the web-based tool at http://science.bostongene.com/tumor-portrait/. Scripts used to generate results are available at

https://github.com/BostonGene. TheMF Portrait visualization tool can be queried and visualized at http://science.bostongene.com/

tumor-portrait/.

Accessions for the datasets used in this study include the following: phs000178 (TCGA), GSE2109 (adenocarcinomas), GSE65904

(Cirenajwis et al., 2015), GSE59455 (Budden et al., 2016), GSE98394 (Badal et al., 2017), phs001036 (Liang et al., 2017), GSE91061

(Riaz et al., 2017), GSE43081 (Hao et al., 2017), ERP105482 (Gide et al., 2019), GSE54467 and GSE80435 (AJCC_1 and AJCC_2

(Hayward et al., 2017; Jayawardana et al., 2015), GSE8401 (Xu et al., 2008), GSE112509 (Kunz et al., 2018), GSE35640 (Ulloa-Mon-

toya et al., 2013), GSE15605 (Raskin et al., 2013), GSE22153 (Jönsson et al., 2010), GSE19293 (Augustine et al., 2010), GSE19234

(Bogunovic et al., 2009), phs000452 (Liu et al., 2019a; Van Allen et al., 2015), GSE115821 (Auslander et al., 2018), GSE78220 and

GSE96619 (Hugo et al., 2016; Garcia-Diaz et al., 2017), GSE100797 (Lauss et al., 2017), SRP067586 (Nathanson et al., 2017),

GSE131521/SRP198996 (Pomeranz Krummel et al., 2019), EGAS00001002556 (Mariathasan et al., 2018), GSE135222 (Jung

et al., 2019), ENA: ERP107734/SRA: PRJEB25780 (Kim et al., 2018).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Tissue samples
Randomly selected melanoma H&E tissue images per TME subtype (total n = 69) were uploaded from TCGA (https://portal.gdc.

cancer.gov/), and after QC, n = 66 were analyzed by a histopathologist. The sample ID numbers are listed in Table S5.

METHOD DETAILS

Tumor datasets
Melanoma dataset collection

We collected 24 public melanoma datasets from theGEO and SRA databases, including the TCGA skin cutaneousmelanoma project

(TCGA-SKCM) (total n samples = 2,016) (Cancer Genome Atlas Network, 2015). Out of 2,016 samples, 23 samples did not pass qual-

ity control due to one of the following reasons: PCA outlier, low correlation with others within the cohort (<0.8 for Affymetrix plat-

forms, < 0.65 for Illumina platforms), low coverage and low phred scores for the RNA-seq, high non-human tissue contamination

(>3%), or high percentage of duplicates (>80%), totaling 1,993 samples. Nevus samples (n = 50) (Badal et al., 2017) (Kunz et al.,

2018) were included for comparison, yielding the final cohort of 2,043 samples. These datasets were processed and then harmonized

as shown in Figures S13A–S13F. Overall, the melanoma cohorts underwent rigorous annotation, including information regarding the

original tissue storage method (fresh-frozen versus FFPE), laboratory source, RNA extraction (total RNA and poly(A) and RNA-seq

protocols provided in Table S5. We found that almost all the RNA-seq datasets subjected to the same RNA extraction and library

preparation methods could be analyzed as combined for further analysis (i.e., without batch effects). RNA-seq datasets (n = 12)

were combined into 5 RNA-seq datasets controlling for batch effects using PCA projections and gene expression correlation anal-

ysis. Next, Fges scores using ssGSEAwere calculated for all 5 RNA-seq datasets as well as themicroarray datasets and thenmedian

transformed (Figures S13C and S13D). Finally, the scores from all datasets were combined and analyzed together. Representative

normalization steps for 3 Fges are presented in Figure S13D, with normalization occurring for all the Fges. The process intensity had

relative scores that allowed for the analysis across different datasets. This procedure was followed for all datasets of various cancer

types and is further detailed below.

Patient clinical information (e.g., therapy, OS, PFS, DFS, DMFS, response, recurrence, prior therapies, primary/metastatic site, LN/

cutaneous/acral/mucosal/other location, primary type (cutaneous/acral/mucosal/other), histologic subtype, Breslow depth, ulcera-

tion) and tumor sample molecular data (e.g., mutation/neoantigen load, specific mutation status, and histological data) from all the

cohorts were manually curated and harmonized.

For each RNA-seq cohort, RNA enrichment type (total or poly(A), sample source (FF/Fresh or FFPE) and library prep protocol were

curated. The Liang et al. cohort (Liang et al., 2017) (phs001036) was split into two cohorts based on RNA enrichment type (total vs

poly(A). HLA haplotype analysis, SNP concordance and correlation of expression showed that 5 patient samples from GSE96619

(Garcia-Diaz et al., 2017) were the same patients from the Hugo cohort (Hugo et al., 2016) (Pt 5 = SRR5343917 + SRR5343918

post treatment; Pt 10 = SRR5343921 + SRR5343922 post treatment; Pt 12 + SRR5343924 + SRR5343923 pre-treatment - potential

timing mix up; Pt 15 = SRR5343919 + SRR5343920; Pt 23 = SRR5343925 + SRR5343926 post treatment). We extended the Hugo

et al. cohort (Hugo et al., 2016) (GSE78220, GSE96619) with the 5 non-duplicate samples. GSE54467 and GSE80435 samples were

split by platforms resulting in two cohorts: AJCC_1 (GPL6884) and AJCC_2 (GPL10558) (Jayawardana et al., 2015; Hayward et al.,

2017). Clinical annotations for AJCC cohorts were matched with the MELA-AU ICGC project annotations by MELA id.

Raw and processed microarray data were downloaded from GEO. Expression was re-processed from raw files, if possible, using

affygcRMA and oligo R packages. All affymetrix datasets with available CEL files were re-normalized using the gcRMA package with
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default parameters. Illumina array data were downloaded fromGEO as is. Next, probes were converted into genes using 1 probe with

the highest mean values in the cohort per gene.

RNA-seq expression for cohorts where raw fastq files were available: Auslander (GSE115821) (Auslander et al., 2018); Badal

(GSE98394) (Badal et al., 2017); Gide (ERP105482) (Gide et al., 2019); Hugo (GSE78220, GSE96619) (Hugo et al., 2016; Garcia-

Diaz et al., 2017); Khan (GSE131521) (Pomeranz Krummel et al., 2019), Kunz (GSE112509) (Kunz et al., 2018), Liang (phs001036)

(Liang et al., 2017), Nathanson (SRP067586) (Nathanson et al., 2017), Riaz (GSE91061) (Riaz et al., 2017), TCGA-SKCM (Cancer

Genome Atlas Network, 2015), Van Allen (phs000452) (Van Allen et al., 2015; Liu et al., 2019a) was re-calculated using a unified

RNA-seq pipeline (Vivian et al., 2017; https://xenabrowser.net/). Cohorts with the same RNA extraction type, sample source and

similar sequencing protocols were combined into large cohort groups and processed together controlling for batch effects in the

space of the Fges (Figure S13). RNA-seq cohorts with no available raw data files at the time of analysis were downloaded from

the corresponding supplemental files. The RNA-seq data belonging to the Liu and Lauss cohorts were downloaded from their sup-

plementary files. Transcript values were summarized and converted to HUGO Symbols, and FPKM values were converted to TPM-

like values by normalizing to 1M transcripts. Each transcriptomic microarray or RNA-seq dataset with no raw data available was as-

signed to a unique cohort group (Table S5).

Immunotherapy-associated dataset collection

We collected datasets of patients treated with immunotherapies with available transcriptomics data: 10 melanoma, one lung cancer

(Jung, n = 27) (Jung et al., 2019) one bladder cancer (Mariathasan, n = 346) (Mariathasan et al., 2018), and one gastric cancer (Kim,

n = 34) (Kim et al., 2018) datasets (Table S5). For the Kim et al. cohort, several samples were excluded due to samplemismatcheswith

WES (and probably annotation): PB-16-047, PB-16-048, PB-16-049, PB-16-051, PB-16-052, PB-16-055, PB-16-056, PB-16-057.

Samples PB-16-043, PB-16-066 excluded due to low protein coding coverage (<10M reads). Sample PB-16-054 was excluded

because it was outlier with PCA. In total, 11 samples were excluded from the Kim et al. cohort. Additionally, we included transcrip-

tomic cohorts of patients treated with MAGE-A3 vaccine (Ulloa-Montoya et al., 2013) and adoptive cell therapy (Lauss et al., 2017)

(Table S5).

Melanoma immunotherapy datasets

We curated samples annotated with pre/on/post treatment, response (bCT-based or progression-free survival based), Recist, OS,

PFS, time to therapy start, and previous treatment with immune checkpoint therapies as shown in Figure S13. We selected only pre-

treatment samples collected less than 200 days before the start of therapy. For anti-CTLA-4-treated patients from Van Allen et al.

(n = 40) (Van Allen et al., 2015) and Nathanson et al. (n = 20) (Nathanson et al., 2017) cohorts, only non-acral or mucosal samples

were analyzed (Table S5). For cohorts of patients treated with anti-PD1 therapy, we selected pre-treatment samples of patients

with cutaneous melanomas which received anti-CTLA4 or anti-PD1 therapy within less than 200 days after biopsy. The Riaz et al.

cohort (Riaz et al., 2017) was excluded because only 15 samples remained after filtering non-cutaneous and anti-CTLA-4 progressed

samples. The Auslander et al. cohort (Auslander et al., 2018) was excluded due to low patient number and the high prevalence of non-

responders. The GSE131521 (Pomeranz Krummel et al., 2019) cohort was excluded because it primarily consisted of brain metas-

tases and almost completely was classified as TME subtype D. The Liang et al. cohort (Liang et al., 2017) was excluded due to all

samples being acral melanomas. Finally, the Gide, Liu, Hugo cohort samples were combined and analyzed as shown in Figure S13

(Table S5).

TCGA molecular and clinical data
TCGA analysis

Overall, 25 TCGA solid tumors (carcinomas) ACC, BLCA, BRCA, CESC, CHOL, COAD, READ, ESCA, STAD, HNSC, KICH, KIRC,

KIRP, LIHC, LUAD, LUSC, OV, PAAD, PCPG, PRAD, SKCM, THCA, UCEC, UCS, UVM were used in the study. Clinical and mutation

data were downloaded from the GDC TCGA data portal (MC3 dataset) (Ellrott et al., 2018). TCGA immune subtypes were retrieved

from the immune landscape publication. Transcriptomic data were downloaded from the USCS XENA portal https://xena.ucsc.edu/

as TPM units. Sample IDs were unified to patient IDs (first 12 characters). Patients with more than 1 tumor RNA-Seq sample or

missing clinical annotation were removed. In total, 7,979 samples were analyzed. The samples from the 25 TCGA projects were re-

organized into 25 histological subtypes based on ICD10 histological code and divergence on PCA andUMAP projections. COAD and

READ were combined into colorectal adenocarcinomas (COREAD) (Cancer Genome Atlas Network, 2012). The CESC project was

divided into cervical squamous cell carcinomas (CESC_SCC) and adenocarcinomas (CESC_AC). The ESCA project was divided

into squamous cell carcinomas (ESCA_SCC) and adenocarcinomas, which were combined with STAD (gastric cancer samples)

into esophagogastric adenocarcinomas (ESGA_AC) (Cancer Genome Atlas Research Network et al., 2017). Tumor cellularity (purity)

estimation was determined as purity estimations (CPE) as previously described (Aran et al., 2015). Tumor-infiltrating nonmalignant

cell number was calculated as 1 - tumor cellularity. Viral abundance was obtained from a previous publication (Rooney et al.,

2015). Samples with more than 1 viral RPM were considered positive. MSI status was calculated using MANTIS (Bonneville et al.,

2017). Samples with MANTIS Score >0.4 were considered as MSI-positive. MSI-positive and POLEmutants (Cancer Genome Atlas

Research Network, 2014; Cancer Genome Atlas Network, 2012) were combined to compare ‘‘hypermutated’’ sample percentages

across the clusters. The Immunophenoscore (IPS) (anti-PD1) for the TCGA melanoma cohorts was obtained from https://tcia.at/

(Charoentong et al., 2017). TCGA immune clusters C1-C6, signature values and TCGA individual tumor subtypes were curated

from (Thorsson et al., 2018).
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Melanoma TCGA dataset (SKCM)

In the original TCGA SKCM publication (Cancer Genome Atlas Network, 2015), only 329 samples were classified into transcriptomic

clusters. We utilized KNN with K = 25 neighbors in the space of top 500 STD genes to classify all other samples (n = 141). Top

frequently altered genes in melanoma were selected for comparison between clusters: [BRAF, NRAS, HRAS, NF1, TP53, APC,

CDKN2A] (Cancer Genome Atlas Network, 2015).

Histological examination of the SKCM TCGA samples

We randomly selected approximately 17 samples of each TME subtype (n = 69). A pathologist performed blind re-examination of

diagnostic formalin-fixed paraffin-embedded slides of the tissue provided by the TCGA data portal (https://portal.gdc.cancer.gov/

). Poor quality histology slides were excluded from analysis (n = 3 slides), totaling 66 analyzed slides (Table S5). Semi-quantitative

pathological assessment was performed on the tissue slides. Pathological analysis focused on the description of tumor immune

inflammation calculating lymphocytic score and stromal organization of tissue bymeasuring relative fibroblast score. The semi-quan-

titative scores were calculated using a 5-grade system (0–4). Tumor purity was also estimated histopathologically as the visually de-

tected percent of tumor cells to all cells in the sample slide. Representative images were taken from slides of appropriate quality for

each TME subtype using pathology sideviewing software Aperio ImageScope on magnification 200x.

TME cluster comparison with publicly available scores and publicly available clusters within the TCGA dataset

PRAD, PCPG, THCA projects were excluded from survival comparison in Figure 4E due to low percentage (<5%) of 5-year events

(deaths, Figure S7A). Immunophenoscore (IPS) was split by median (Charoentong et al., 2017). TCGA pan-cancer clusters (Thorsson

et al., 2018) were distributed unevenly in each project. Low populated clusters in each cancer type (less than 10 samples) were

excluded from all survival analyses (Figures 4F and S6) for better visualization. Also, because of the disproportion of IS clusters within

TCGA projects, in HR comparison in Figure 4E, we excluded TCGA projects (THCA and KIRC) where the majority of the samples

(>85%) were classified as a single cluster (Figure S7D).

Bioinformatics
NGS data quality control

Quality control of all NGS samples was performed using FastQC v0.11.5, FastQ Screen v0.11.1, RSeQC v3.0.0, MultiQC v1.6. HLAs

were genotypes from RNA-seq or WES using OptiType (Szolek et al., 2014). Sample correspondence was checked using HLA com-

parison and the conpair algorithm (Bergmann et al., 2016).

WES processing

Alignment: low quality reads were filtered using FilterByTile/BBMap v37.90 and aligned to human reference genome GRCh38

(GRCh38.d1.vd1 assembly) using BWA v0.7.17. Duplicate reads were removed using Picard’s v2.6.0 MarkDuplicates, indels were

realigned by IndelRealigner and recalibrated by BaseRecalibrator and ApplyBQSR (last three tools fromGATK v3.8.1). Variant calling:

Both germline and somatic single nucleotide variations (sSNVs), small insertions and deletions were all detected using Strelka v2.9.

All variants, insertions and deletions were annotated using Variant Effect Predictor v92.1. Copy number alterations were evaluated

with a customized version of Sequenza v2.1.2.

Tumor mutation load (TMB) calculations

Non-synonymous coding mutations were used to calculate mutation load. WES mutation burden was calculated as (Mutation load/

50). Melanoma samples with <100 mutations were considered low-mutated, samples with >500 mutations were considered highly

mutated and the rest were medium-mutated. In the Mariathasan et al. cohort (Mariathasan et al., 2018), we split mutations by top

quartile of mutation burden or by median. For pan-cancer analysis within TCGA, we performed median transformation within cohort

groups.

RNA-seq processing

RNA-seq readswere aligned using Kallisto v0.42.4 to GENCODE v23 transcripts 69with default parameters. The protein-coding tran-

scripts, IGH/K/L- and TCR-related transcripts were retained, and the noncoding RNA, histone- and mitochondria-related transcripts

were removed, resulting in 20,062 protein coding genes. Gene expression was quantified as transcripts per million (TPM) and log2-

transformed (Goldman et al., 2020).

T cell receptor/B cell receptor repertoire profiling

MIXCR version 2.1.7 was used to analyze the RNA-seq samples. Single clonotypes were grouped into clones with unique VDJ com-

bination and identical CDR3 nucleotide sequences. For B-cells, the clones were further aggregated into clone groups if the VDJ com-

bination was the same and if the CDR3 nucleotide sequences differed no more than 1 nt.

Survival analysis

Survival differences were assessed using log rank test CamDavidsonPilon/lifelines: v0.14.6 (Version v0.14.6) (Davidson-Pilon et al.,

2018). OS and PFS for the SKCMTCGAproject (Cancer GenomeAtlas Network, 2015) were corrected to sample collection time (e.g.,

submitted tumor diagnosis). Samples with PFS time < collection time were not used. Survival analysis for melanoma cohorts without

systematic treatment or on standard of care therapies was performed on cohorts with typical survival curves: TCGA-SKCM (Cancer

Genome Atlas Network, 2015), Cirenajwis (Cirenajwis et al., 2015), AJCC_1 (Hayward et al., 2017), Xu (Xu et al., 2008), and Bogunovic

and Jönsson (Bogunovic et al., 2009; Jönsson et al., 2010). Immunotherapy-treated cohorts were excluded from the pan-melanoma

survival analysis.

For survival analysis amongst biomarkers, single-variate Cox regression modeling was conducted controlling for cohort variability

for the melanoma datasets. Only our TME subtypes, melanoma (Cancer Genome Atlas Network, 2015) and bladder cancer Lund
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clusters (Sjödahl et al., 2012) were analyzed as categorical variables. All numeric variables were median-transformed unless other-

wise specified. Kaplan-Meier comparative survival analyses were also conducted. To extract the TCGA types for survival compar-

isons across themelanoma and bladder cancer cohorts, the TCGA gene signatures were curated from Thorsson et al. (2018), and the

gene names were updated using mygene v.3.0.0 (Wu et al., 2012). Signature values were calculated using ssGSEA (Figure S9A).

Next, a random forest-based model was trained and validated on the TCGA SKCM dataset and applied to the other immuno-

therapy-treated melanoma cohorts (Gide et al., 2019; Hugo et al., 2016; Liu et al., 2019a; Nathanson et al., 2017; Van Allen et al.,

2015) with melanoma-scaled signature values. The same approach was applied to the TCGA bladder cancer cohort and applied

to the immunotherapy-treated bladder cancer cohorts (Mariathasan et al., 2018). The Immunophenoscore (Charoentong et al.,

2017) values were curated from the TCIA portal (https://tcia.at/tools/toolsMain). TMB was calculated as described elsewhere in

the manuscript and log10 transformed. The interferon ɣ signature was obtained from Thorsson et al. (2018) and calculated using

ssGSEA. We reproduced the IMPRES score as previously described (Auslander et al., 2018), which was applied to all the analyzed

cohorts. For MHC1 and MHCII, the corresponding Fges were applied. CXCL9 and PD-L1 expression was analyzed as single gene

expression in log2 scale. The F subtype was used as an intercept for each cancer type (Figure S10A). Other continuous variables

were normalized (median-scaled), clipped to (�2; 2) for visualization and projected into [0–1] for better hazard ratio comparability

within each other and with categorical variables. Estimated marginal means analysis was applied to extract intercept-independent

information for each variable (R package emmeans; Figure S11).

Transcriptomic signatures

Cell abundance was measured using CIBERSORT with the LM22 matrix (Newman et al., 2015) and the MCP-counter R package

(Becht et al., 2016). Expression signatures from (Sxenbabao�glu et al., 2016) were calculated using ssGSEA. Pathways activity scores

(N = 11) were calculated using PROGENy (Schubert et al., 2018). CYT score was calculated as previously described (Rooney et al.,

2015). Chromosomal instability score (CIN) was calculated as previously described (Ock et al., 2017). The TCGA melanoma types

were curated from (Cancer Genome Atlas Network, 2015). Samples with unknown class were typed using the k-nearest neighbors

algorithm with n-nearest neighbors = 25 in the space of the 500 most variable genes in TCGA-SKCM cohort.

Development of the gene expression signatures (Fges)
Purified cell type compendium

We collected 4,212 RNA-seq gene expression datasets from purified cell populations, including normal and melanoma cells from

public data sources (GEO) (Barrett et al., 2013), SRA (Leinonen et al., 2011), ENA, Array Express, Protein Atlas (Uhlen et al.,

2019), BluePrint, ImmPort (immport.org), to create a cell compendium (Table S2). We included datasets using the following criteria:

isolated from human tissue, poly(A) or total RNA-seq performed with read length higher than 31 bp, having at least 4M of coding read

counts, passed quality control by FASTQC and no contamination detected (<2%). The compendium included sorted T cells, CD4+

T cells, T-regs, T helper cells, CD8+ T cells, NK cells, benign B cells, granulocytes of different types, neutrophils, macrophages,

monocytes, myeloid Cells, dendritic cells, plasmacytoid dendritic cells, vascular endothelial cells, and fibroblasts. ‘‘Activated mac-

rophages’’ cells were selected from samples of macrophages activated with bacteria or LPS according to annotation. Sorted mel-

anoma tumor cells and cell lines were also included for comparison.

Fges describing the TME and tumor properties

We developed Fges of TME cellular phenotypes, cellular states, physiological and pathological processes and signaling pathways

using a combination of Fges and literature curation. By integrating knowledge from multiple publications, we manually curated each

signature to include only those genes that are exclusively expressed in the defined cell type or specifically associated with a particular

biological process as described in the text. The Fges defining unique cell types were validated on the RNA-seq compendium of

purified immune and tumor cell populations n = 7,011 using tSNE projections andMann-Whitney tests. Signature scores were calcu-

lated by in-house python implementation of the ssGSEA (H€anzelmann et al., 2013). Then, the intensities were median-scaled (me-

dian-centered and MAD-scaled) for all the samples within the cohort groups. Signature correlation analysis was performed using

Pearson’s correlation. TCGA SKCM samples were used to estimate correlating signatures.

Louvain clustering

We calculated the Pearson correlation [-1, 1] between all TCGA SKCM samples in the space of the 26 process intensities (normalized

ssGSEA enrichment scores). Next, the distancematrix was converted into a graph where each sample formed a node and two nodes

formed an edge with the weight equal to their Pearson correlation. All edges with weight <0.45 were removed. The Louvain commu-

nity detection algorithm (Blondel et al., 2008) was applied to calculate graph partitioning into clusters with default parameters. To

mathematically determine the optimal weight threshold for observed clusters, minimum David Bolduin, maximum Calinski Harabasz

and Silhouette scores were employed (Figure S2). Separations with low populated clusters (<5% of samples) were not considered,

and suboptimal separations were observed with more than 4 clusters/subtypes. The best four-cluster separation was selected, and

the clusters were labeled as TME Subtypes IE/F, IE, F, and D. Ultimately, the same procedure was applied to the pan-cancer cohort.

The melanoma clusters were visualized in cytoscape (v3.4.0) (10.1101/gr.1239303.metabolite). Nodes were organized using

‘‘Perfuse force directed layout’’ (default spring coefficient = 13 10�5, number of iterations = 100). Node size represents the number

of its neighbors (adjacent edges). Node color corresponds to tumor subtype unless otherwise mentioned. Other melanoma cohorts

were classified using KNN with K = 35. Bladder cancer (Mariathasan et al., 2018) was classified using a KNNmodel trained on TCGA

BLCA samples; lung cancer (Jung et al., 2019) was classified using a KNNmodel trained on TCGA LUAD samples; the EXPO dataset

GSE2108 was classified using a KNN model trained on pan-cancer TCGA cohort samples.
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Statistical analysis of alterations and CNV
Mutation associations

To investigate the association ofmutations in driver geneswith clusters, we used the Cochran-Mantel-Haenszel test (R stats package

v3.4.4), controlling for tumor histological subtypes, to test the independence of the immune clusters and gene mutation counts. A

total of 509 genes were selected by combining TCGA PanCancer Atlas Driver Mutation Working Group CGAT list (Bailey et al.,

2018) and genes from the immune processes gene sets. Resulting p values were FDR corrected using Benjamini-Hochberg proced-

ure, and genes odds ratios are reported.

CNA association

To limit the number of segments with CNAs for testing, we performed GISTIC v23 analysis on the pan-cancer TCGA cohort. To es-

timate prevalence of copy number variations in clusters, ordinal regression was used. Copy number events in cytobands per sample

were averaged in genes that passed 0.95 GISTIC significance threshold. Then, each level of averaged event was converted into

ordinal scale, preserving increasing order of alterations from deletion tomultiplication. Ordinal regressionmodel (R clm from package

ordinal, v2018.4.19) with proportional odds link function was fitted using these data for each cytoband, with cluster as a categorical

variable and controlling for histological type. Marginal effects of each cluster were calculated using contrasts implemented in

lsmeans R package (v2.27.62), with FDR Benjamini-Hochberg correction of effects p values. Cluster effects on CNA in proportional

odds scale was plotted as horizontal barplots.

Alteration clusters

A list of actionable genes was obtained from (Sanchez-Vega et al., 2018), resulting in the total of 5,116 patients from TCGA having at

least one mutation in a selected gene. SNVs and CNAs from selected genes were clustered using spectral co-clustering algorithms

(Spectral Co-clustering model from scikit-learn 0.22.2) to obtain diagonal matrices of actionable clusters. Then, actionable clusters

were manually curated to refine groups of genes belonging to pathways.

Data visualization
Images and graphics

Python-matplotlib (v1.5.1) (Matplotlib, n.d.) and python-seaborn (v0.7.1) mwaskom/seaborn: v0.8.1 Zenodo (Waskom et al., 2017)

were employed. The Pearson correlation was used as the default similarity metric (unless otherwise mentioned) for correlation

matrices. Hierarchical clustering was performed using complete linkage and Euclidean distance for correlation matrices clustering.

UMAP projection was performed using the UMAP package https://github.com/lmcinnes/umap and visualized with matplotlib.

Visualization of the Molecular Functional portrait

The portraits were visualized as a graph based structure using Mathematica 11 standard packages (Wolfram Research, Champaign,

IL, USA). A node size that describes an intensity of a process in a particular patient was based on a normalized score calculated for

process intensity. A distribution of ssGSEA scores for each process was mapped to the range of (0,1) by a cumulative distribution

function (CDF) within the corresponding TCGA cohort. Driver mutations influencing therapeutic and prognostic outcomes were de-

picted in the tumor properties group as the ‘‘mutation status’’ node, representing a total number of nonsynonymousmutations found

in the patient tumor. The upper genes arising from this node show only themost important recurrentmutations. The ‘‘mutation status’’

node size was also transformed to the range of (0,1) by CDF from the corresponding cohort distribution.

All the processes were labeled as either anti-tumor or pro-tumor. Anti-tumor processes were colored in a blue gradient, pro-tumor

processes were colored in a burgundy gradient. The color shades represent process intensity. Gene nodes have a fixed size and are

colored using the same method as the processes. The size of the ‘‘malignant cell’’ node as well as the ‘‘non-malignant microenviron-

ment’’ nodes were visualized based on the tumor purity.

QUANTIFICATION AND STATISTICAL ANALYSIS

The statistical information for the experiments are detailed in the text, figure legends, and figures.

Chi-square test was used to check associations between 2 categorical variables with more than 2 categories. The Pearson’s cor-

relation was used as a Fges similarity measure. TheMann-Whitney U test was used for statistical analysis comparing non-categorical

values between groups. For survival analysis, statistical analysis between Kaplan-Meier curves was performed using the log rank test

(pairwise and/ormultivariate). Linear regression analysis was applied to assess TME evolution and dynamics. Log rank score test was

used for Cox proportional hazards models. LN-transformed Hazard ratios were shown unless specified. If other statistical tests

were used, it is reported in the figure legends. Significance values correspond to p values, q values or FDR as follows: ns R 0.05,

* <0.05, ** <0.01, *** <0.001, **** <0.0001. In the box plots, the upper whisker indicates the maximum value or 75th percentile +1.5

IQR; the lower whisker indicates the minimum value or 25th percentile �1.5 IQR.

ADDITIONAL RESOURCES

Data visualization tool generated http://science.bostongene.com/tumor-portrait/.
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